SOME SUFFICIENT CONDITIONS FOR THE GONALITY OF A SMOOTH CURVE

M. COPPENS
University of Antwerp, U.I.A., Universiteitsplein I, B-2610 Wilrijk, Belgium

Communicated by F. Oort

Received 1 December 1982
Revised 17 May 1983

Introduction

In this paper, a smooth curve means an integral, complete, non-singular onedimensional scheme of finite type over \mathbb{C}. One can also consider a Riemann-surface. I say that a smooth curve C is d-gonal if there exists a surjective morphism $\phi: C \rightarrow \mathbb{P}^{1}$ of degree d.

Let C be a smooth curve of genus g and let W_{d}^{r} be as defined in Notation 4. Clifford's Theorem says that a special effective divisor D on C satisfies

$$
2 \operatorname{dim}(|D|) \leq \operatorname{deg}(D) .
$$

Moreover, equality

$$
2 \operatorname{dim}(|D|)=\operatorname{deg}(D)
$$

is only possible if C is hyperelliptic or if D is a canonical divisor on C (see e.g. [6, Ciapter IV, Theorem (5.4)]). In [11] it is proved that, if $0 \leq r \leq s \leq g-1$, then

$$
\operatorname{di\mu }\left(W_{r+s}^{r}\right) \leq s-r .
$$

Here, $\operatorname{dim}(X)$ is used to denote the maximum of the dimensions of the irreducible components of X, while $\operatorname{dim}(X)$ is the minimum of the dimensions of the ir . reducible components of X. Moreover, if $0 \leq r \leq s \leq g-2$, then

$$
\operatorname{dim}\left(W_{r+s}^{r}\right)=s-r
$$

if and only if C is hyperelliptic. In the appendix of [12], it is proved that, if there exists $d \in \mathbb{Z}$ with $2 \leq d \leq g-2$ such that

$$
\operatorname{dim}\left(W_{d}^{1}\right) \geq d-3,
$$

then C is of one of the following types of curves:
a hy'perelliptic curve;
a trigonal curve;
a two-sheeted covering of an elliptic curve;
a smooth plane curve of degree 5 .
Assume that C is not a covering of degree at least two of a smooth curve C^{\prime} of genus at least one. In this paper, we give sufficient conditions, concerning $\operatorname{dim}\left(\boldsymbol{W}_{d}^{r}\right)$, for C to be f-gonal (see Theorem 6(a)).

Let C be a non-hyperelliptic smooth curve of genus g. In [10] and in [8], it is proved that C is $(g-1)$-gonal. In [10], it is proved that if a smooth curve of genus $g \geq 15$ is not hyperelliptic and is not a two-sheeted covering of a smooth curve of genus two, then it is ($g-2$)-gonal. In [9], it is proved that if a smooth curve of genus $g \geq 12$ is a two-sheeted covering of a smooth curve of genus two, then it is $(g-2)$ gonal. Assume that C is not a covering, of degree at least two, of a smooth curve of genus at least one. In this paper, we give sufficient conditions for C to be ($g-f$)gonal (see Theoren 6(b)).

In Example 12, I show how the results of Theorem 4 can be sharpened. In particular, if a smooth curve of genus $g \geq 13$ is not a hyperelliptic curve, not a trigonal curve, and not a covering of degree at least two of a smooth curve of genus at least one, then it is ($g-2$)-gonal. This result is sharper than G. Nartens' result mentioned before.

Let X be a scheme of finite type over \mathbb{C}. If we write $x \in X$, then we mean that X
 $\operatorname{Hom}_{O_{x}}\left(E, O_{X}\right)$.

Let C be a smooth curve. We say that C has a g_{d}^{r}, if C has a linear system of dimension r and of degree d. We also use the notation g_{d}^{r} to indicate a particular linear system of dimension r and of ciegree d on C.

If $A \subset \mathbb{D}^{r}$, then we write $\langle A\rangle$ for the linear span of A. Assume that C is embedded in \mathbb{P}^{r} and that D is an effective divisor on C. We define

$$
\langle D\rangle:=\bigcap\left\{H, \text { a hyperplane in } \mathbb{P}^{r}: H \cdot C \geq D\right\}
$$

If C is non-hyperelliptic and if C is canonically embedded, then the geometric Riemann-Roch Theorem says that

$$
\operatorname{dim}(\langle D\rangle)=\operatorname{deg}(D)-\operatorname{dim}(|D|)-1
$$

(see e.g. [4, p. 248]). We define

$$
\operatorname{Supp}(D):=\{x \in C: D-x \geq 0\}
$$

We write K_{C} for the canonical linear system on C. A diviscr D on C is called a specia. divisor on C if and only if $\mid K_{C}-D \neq \emptyset$. A linear system g_{d}^{r} on C is called a special linear system on C if the elements of g_{d}^{r} are special aivisors on C. Let D_{1} and D_{2} be two effective divisors on C. Then

$$
A=\operatorname{Inf}\left(D_{1}, D_{2}\right)
$$

is the effective divisor on C defined by the conditions that

$$
D_{i}-A \geq 0 \text { for } i \in\{1,2\}
$$

and for each \mathbb{C}-rational point x on C satisfying $D_{1}-A-x \geq 0$, the divisor D_{2} -$A-x$ is i.vt effective. Let g_{1} and g_{2} be two linear systems on C. Assume that D is the divisor on C, defined by the condition that there exist linear systems g_{1}^{\prime} and g_{2}^{\prime} on C, having no common fixed points, so that $g_{i}=g_{i}^{\prime}+D$ for $i \in\{1,2\}$. Then we say that g_{1} and g_{2} are compounded by the same involution on C if and only if for each $x \in C$ and for any two divisors $D_{i} \in g_{i}^{\prime}(i \in\{1,2\})$, so that $D_{i}-x \geq 0$, we have

$$
\operatorname{deg}\left(\operatorname{Inf}\left(D_{1}, D_{2}\right)\right) \geq 2
$$

If D is a divisor on C, then we write $O_{C}(D)$ for the sheaf on C associated to D, as it is defined in [6, p. 144].

Results

In this paper, we are going to consider smooth curves having infinitely many g_{d}^{1} 's. Let $; d \in \mathbb{Z}_{\geq 2}$. If

$$
g \leq 2 d-3
$$

then every smooth curve of genus g has infinitely many g_{d}^{1} 's (see [5]).

Lemma 1. Let $g, d \in \mathbb{Z}_{\geq 2}$ so that $d^{\prime} \leq g-1$. Let $e \in \mathbb{Z}_{\geq 2}$ so that

$$
g>(e-2) d-\binom{e-1}{2}
$$

Let C be a smooth curve of genus g and let g_{1}, \ldots, g_{e} be complete linear systems on C without fixed points and each one of them has dimension 1 and degree d. Assume that for each $i, j \in\{1, \ldots, e\}$, with $i \neq j$, the linear systems g_{i} and g_{j} are not compounded by the same involution on C. Then

$$
\operatorname{dim}\left(\left|g_{1}+\cdots+g_{e}\right|\right) \geq\binom{ e+1}{2}
$$

To prove this lemma, we use the following lemma.

Lemma 2. Let C be a non-hyperelliptic smooth curve of genus g and let D be a special divisor of degree d or: C such that $|D|$ has no fixed points. Let g_{e}^{1} and g_{f}^{1} be complete linear systems on C without fixed points, which are not compounded of the same involution on C. Moreover, assume that $\left|D+g_{e}^{1}\right|$ and $\left|D+g_{f}^{1}\right|$ are special linear systems on C. If

$$
\operatorname{dim}(|D|)=b, \quad \operatorname{dim}\left(\left|D+g_{e}^{1}\right|\right)=a_{1}, \quad \operatorname{dim}\left(\left|D+g_{f}^{1}\right|\right)=a_{2},
$$

then

$$
\operatorname{dim}\left(\left|D+g_{e}^{1}+g_{f}^{\prime}\right|\right) \geq a_{1}+a_{2}+1-b
$$

Moreover, if $|D|$ and g_{e}^{1} (resp. $|D|$ and $\left.g_{f}^{1}\right)$ are not compounded of the same involution on C, then

$$
a_{1} \geq b+2 \quad \text { (resp. } a_{2} \geq b+2 \text {) }
$$

If

$$
a_{1}=b+2+a_{1}^{\prime} \quad \text { and } \quad a_{2}=b+2+a_{2}^{\prime}
$$

then

$$
\operatorname{dim}\left(\left|D+g_{e}^{1}+g_{f}^{\prime}\right|\right) \geq a_{1}^{\prime}+a_{2}^{\prime}+b+5 .
$$

Proof. Assume that C is canonically embedded. Let $x \in C$ and $D_{1} \in g_{e}^{1}$ and $D_{2} \in g_{f}^{1}$ such that

$$
\begin{aligned}
& \operatorname{supp}\left(D_{1}\right) \cap \operatorname{supp}(D)=\emptyset, \quad \operatorname{supp}\left(D_{2}\right) \cap \operatorname{supp}(D)=\emptyset, \\
& x=\inf \left(D_{1}, D_{2}\right), \quad x \notin\langle D\rangle \cap\left\langle D_{2}\right\rangle .
\end{aligned}
$$

Then

$$
\left\langle D_{1}+D_{2}+D-x\right\rangle=\left\langle\left\langle D+D_{1}\right\rangle U\left\langle D_{2}\right\rangle\right\rangle,
$$

hence

$$
\begin{aligned}
\operatorname{dim}\left(\left\langle D_{1}+D_{2}+D-x\right\rangle\right)= & \operatorname{dim}\left(\left\langle D+D_{1}\right\rangle\right)+\operatorname{dim}\left(\left\langle D_{2}\right\rangle\right) \\
& -\operatorname{dim}\left(\left\langle D+D_{1}\right\rangle \cap\left\langle D_{2}\right\rangle\right) .
\end{aligned}
$$

Becuse of the geometric Riemann-Roch Theorem, one has

$$
\begin{aligned}
& \operatorname{dim}(\langle D\rangle)=d-b-1, \\
& \operatorname{dim}\left(\left\langle D+D_{1}\right\rangle\right)=d+e-a_{1}-1, \\
& \operatorname{dim}\left(\left\langle D+D_{2}\right\rangle\right)=d+f-a_{2}-1, \\
& \operatorname{dim}\left(\left\langle D_{2}\right\rangle\right)=f-2 .
\end{aligned}
$$

Hence,

$$
\operatorname{dim}\left(\langle D\rangle \cap\left\langle D_{2}\right\rangle\right)=a_{2}-b-2 .
$$

Because

$$
\left\langle D_{2}\right\rangle \cap\left\langle D+D_{1}\right\rangle \supset\left\langle\left(\langle D\rangle \cap\left\langle D_{2}\right\rangle\right)\langle\{x\}\rangle,\right.
$$

one has

$$
\operatorname{dim}\left(\left\langle D_{2}\right\rangle \cap\left\langle D+D_{1}\right\rangle\right) \geq a_{2}-b-1
$$

Hence,

$$
\operatorname{dim}\left(\left\langle D_{1}+D_{2}+D-x\right\rangle\right) \leq d+e+f-a_{1}-a_{2}+b-2
$$

Therefore, because of the geometric Riemann-Roch Theorem, one has

$$
\operatorname{dim}\left(\left|D_{1}+D_{2}+D-x\right|\right) \geq a_{1}+a_{2}-b
$$

But x is not a fixed point of $\left|D_{1}+D_{2}+D\right|$, hence

$$
\operatorname{dim}\left(D_{1}+D_{2}+D \mid\right) \geq a_{1}+a_{2}-b+1 .
$$

If $|D|$ and g_{e}^{1} are not compounded of the same involution on C, then there exist $x \in C$ and divisors $D_{1} \in|D|$ and $D_{2} \in g_{e}^{1}$, such that $\inf \left(D_{1}, D_{2}\right)=x$. Using the geometric Riemann-Roch Theorem, one finds that

$$
\operatorname{dim}\left(\left|D+D_{1}-x\right|\right) \geq b+1
$$

But x is not a fixed point of $\left|D+D_{1}\right|$, hence,

$$
\operatorname{dim}\left(\left|D+D_{1}\right|\right) \geq b+2
$$

Proof of Lemma 1. See also [1], but Lemma 2 provides a more geometric proof. Because, for $i \neq j$, the linear systems g_{i} and g_{j} are not compounded of the same involution on C, the curve C is non-hyperelliptic (see e.g. [15, Chapter VI, Theorem (7.1)]). Using Lemma 2 and induction on n, one can prove, for $d^{\prime} \in \mathbb{Z}_{\geq 3}$ and if $\left|g_{1}+\cdots+g_{d^{\prime}-2}\right|$ is special, that

$$
\operatorname{dim}\left(\left|g_{1}+\cdots+g_{d^{\prime}}\right|\right) \geq\binom{ d^{\prime}+1}{2}
$$

But, because of the induction hypothesis, one finds that

$$
\operatorname{dim}\left(\left|g_{1}+\cdots+g_{d^{\prime}-2}\right|\right) \geq\binom{ d^{\prime}-1}{2}
$$

and therefore $\left|g_{1}+\cdots+g_{d^{\prime}-2}\right|$ is special if

$$
g>d^{\prime}\left(d^{\prime}-2\right)-\binom{d^{\prime}-1}{2}
$$

This proves Lemma 1.
Remark. If the assumptions made in the statement of Lemma 1 are fulfilled, then, because of the Riemann-Roch Theorem, one has

$$
g \geq e d-\binom{e+1}{2}
$$

Proposition 3. Let $g \in \mathbb{Z}_{\geq}$. and $d \in \mathbb{Z}_{\geq 3}$. Let C be a smooth curve of genus g. Assume that C has infinitely many complete g_{d}^{1} 's, so that any two of them are not compounded by the same involution on C, then

$$
g \leq \frac{1}{2} d(d-1)
$$

Proof. Assume that

$$
g>\frac{1}{2} d(d-1)
$$

Let g_{1}, \ldots, g_{d-i} be complete linear systems of degree d and dimension 1 on C,
without fixed points, so that any two of them are not compounded by the same involution on C. We can use Lemma 1 to conclude that

$$
\operatorname{dim}\left(\left|g_{1}+\cdots+g_{d-1}\right|\right) \geq \frac{1}{2} d(d-1)
$$

On the other hand,

$$
\operatorname{deg}\left(g_{1}+\cdots+g_{d}\right)=d(d-1)
$$

From Clifford's Theorem (see e.g. [6, p. 343, Theorem (5..4)]), it follows that

$$
g_{1}+\cdots+g_{d-1}=K_{C}
$$

Let g_{d-1}^{\prime} be a complete linear system of dimension 1 and degree d on C without fixed points, so that $g_{d-1}^{\prime} \notin\left\{g_{1}, \ldots, g_{d-1}\right\}$ and so that g_{d-1}^{\prime} is not compounded by the same involution on C with any of the linear systems g_{1}, \ldots, g_{d-1}. In this case, taking $g_{1}, \ldots, g_{d-2}, g_{d-!}^{\prime}$ instead of g_{1}, \ldots, g_{d-1}, we find that

$$
\left|g_{1}+\cdots+g_{d-2}+g_{d-1}^{\prime}\right|=K_{C}
$$

heale

$$
g_{d-1}^{\prime}\left|=\left|g_{d-1}\right|\right.
$$

This gives a contradiction with the existence of infinitely many complete g_{d}^{1} 's on C. This completes the proof of the proposition.

Notation 4. Let C be a smooth curve of genus $g \geq 2$. In what follows, we assume that we have choosen a base point P_{0} on C. Let $\mathrm{Pic}^{\prime \prime}(C)$ be the Picard variety of \mathbb{C} whose \mathbb{C}-rational points correspond to isomorphism classes of invertible $O_{C}{ }^{-}$ modules of degree 0 .

If L is an invertible O_{C}-module of degree 0 , then we write [L] for the corresponding \mathbb{C}-rational point on $\mathrm{Pic}^{0}(C)$. Consider the morphisms

$$
I(d): C^{(d)} \rightarrow \operatorname{Pic}^{0}(C): D \mapsto\left[O_{C}\left(D-d P_{0}\right)\right]
$$

The morphism $I(1)$ is a closed immersion and it is also the Albanese mapping of C (see e.g. [14, (0.5)]). We call $\mathrm{Pic}^{0}(C)$ the Jacobian variety of C and we denote it by $J(C)$. Let $r, d \in \mathbb{Z}_{\geq 1}$. Let

$$
W_{d}^{r}:=\left\{x \in J(C): \operatorname{dim}\left([I(d)]^{-1}(x)\right) \geq r\right\} .
$$

Those are Zariski closed subsets of $J(C)$. We also write W_{d} instead of W_{d}^{0}. We write k for the \mathbb{E}-rational pomt $\left[O_{C}\left(K-(2 g-2) P_{0}\right)\right]$, on $J(C)$ where K is a canonical divisor on C.

Lemma 5. Let C be a smooth curve of genus g. Assume that Y is an irreducible component of W_{d}^{1} such that $Y \not \subset W_{d-1}^{1}+W_{1}$. Let $e=\operatorname{dim} Y$ and let $D \in C^{(d)}$ such that $[/(d)](D) \in Y$. Then, $\operatorname{dim}(2 D) \geq 2+e$.

Proof. Let $M_{g, n}$ be the fine moduli space of the smooth curves of genus g with a
level- n-structure and let $\pi: \Gamma_{g, n} \rightarrow M_{g, n}$ be the universal family. Let $x \in M_{g, n}$ such that $C \cong \pi^{-1}(x)$. Let $\phi: H_{g, n, d} \rightarrow M_{g, n}$ be the fine moduli space of the couples $(x ; f)$ where $x \in M_{g, n}$ and f is a covering $C_{x} \rightarrow \mathbb{P}^{1}$ of degree d.
Let $D \in C^{(d)}$ such that

$$
[I(d)](D) \in Y \backslash\left(W_{d-1}^{1}+W_{1}\right)
$$

Let $f: C \rightarrow \mathbb{P}^{1}$ be a covering of degree d such that D is a fibre of f. Let x be a poini on $M_{g, n}$ such that $C_{x} \cong C$ and let y be the point on $H_{g, n, d}$ corresponding to (x, f). Consider the exact sequence

$$
0 \rightarrow T_{C} \rightarrow f^{*}\left(T_{\mathbb{P}^{\prime}}\right) \rightarrow N_{f} \rightarrow 0
$$

Because of the deformation theory of holomorphic maps (see [7]), there exists a canonical isomorphism

$$
T_{y}\left(H_{g, n, d}\right) \cong H^{0}\left(C, N_{f}\right)
$$

and the tangent map $d_{y}(\phi)$ corresponds to the coboundary map

$$
\delta: H^{0}\left(C, N_{f}\right) \rightarrow H^{1}\left(C, T_{C}\right) .
$$

But the dimension of the irreducible component of $\phi^{-1}(x)$ containing y equals $e+3$. Moreover,

$$
\operatorname{dim}\left(\operatorname{ker}\left(d_{y}(\phi)\right)\right)=\operatorname{dim}(\operatorname{ker}(\delta))=\operatorname{dim}\left(H^{0}\left(C, f^{*}\left(T_{\mathbb{P}^{\prime}}\right)\right)\right)
$$

and $f^{*}\left(T_{\mathbb{P}^{\prime}}\right) \cong O_{C}(2 D)$, hence

$$
\operatorname{dim}\left(H^{0}\left(C, O_{C}(2 D)\right)\right) \geq e+3
$$

This proves the lemma.
Assumption A. Let $f \in Z_{\geq 3}$ and let C be a smooth curve of genus g. Assume that there exists no covering $\phi: C \rightarrow \bar{C}$ such that $1<\operatorname{deg}(\phi)<f$.

In Theorem 6 and Lemma 7-10, we assume that assumption A holds.
Theorem 6. Let $f^{\prime}=2(f-1)$ and assume that $g>\frac{1}{2} f^{\prime}\left(f^{\prime}-1\right)$. One has:
(a) If there exist $r, d \in{ }^{\Pi} \geq 1$ so that

$$
d-2 r-f+2 \geq 0 \text { and } d-r \leq g-f
$$

and

$$
\operatorname{dim}\left(W_{d}^{r}\right) \geq d-2 r-f+2
$$

then

$$
\operatorname{dim}\left(W_{d}^{r}\right)=d-2 r-f+2,
$$

and C is f-gonal,
(b) C is d-gonal for each $d \geq g-f+2$.

Proof. Het $f=3$. Assertion (b) is proved in [10] and in [8]. Assertion (a) is proved in the Appendix of [12].

Assume from now on that $f>3$ and assume that the theorem is true for $f-t$, with $t \in \mathbb{Z}$ and $1 \leq t \leq f-2$, instead of f.

Let $r, d \in \mathbb{Z}_{\geq 1}$ so that

$$
a-2 r-f+2 \geq 0 \quad \text { and } \quad d-r \leq g-f .
$$

Because C is not $(f-1)$-gonal, we know that

$$
\operatorname{dim}\left(W_{d}^{r}\right)<d-2 r-f+3
$$

Assume that $r \in \mathbb{Z}_{\geq 2}$ and

$$
\operatorname{dim}\left(W_{d}^{r}\right)=d-2 r-f+2
$$

Lemma 7. Let $r, d \in \mathbb{Z}_{\geq 1}$ and assume that, for $1 \leq e \leq r-1$, one has

$$
\operatorname{dim}\left(W_{d-e}^{r-e}\right) \leq(d-e)-2(r-e)-f+2
$$

If

$$
\operatorname{dim}\left(W_{d}^{r}\right) \geq d-2 r-f+2
$$

then,

$$
\operatorname{dim}\left(W_{d r+1}^{\prime}\right)=d-r+1-f
$$

Proof. The lemma trivially holds for $r=1$. Assume that $r \geq 2$ and that the lemma holds for $r-1$ instead of r. Because of Proposition 3 in [8], one has

$$
\operatorname{dim}\left(W_{d-1}^{r-1}\right)>\operatorname{dim}\left(W_{d}^{r}\right) .
$$

Hence

$$
\operatorname{dim}\left(W_{d-1}^{r-1}\right) \geq d-2 r-f+3
$$

But, because of the assumptions, one has

$$
\operatorname{dim}\left(W_{d-1}^{r-1}\right) \leq d-2 r-f+3
$$

Hence

$$
\operatorname{dim}\left(W_{d-1}^{r-1}\right)=d-2 r-f+3=(d-1)-2(r-1)-f+2
$$

and the lemma follows.

Continuation of the proof of Theorem 6. Because of Lemma 7, we can assume that there exist $d^{\prime} \in \mathbb{Z} \geq 1$ such that

$$
d^{\prime}-f \geq 0 \quad \text { and } \quad d^{\prime} \leq g-f+1
$$

and

$$
\operatorname{dim}\left(W_{d^{\prime}}^{1}\right)=d^{\prime}-f .
$$

Lemma 8. Let $g \geq 4 f-4$. Assume that, for $d, r \in \mathbb{Z} \geq 1$ such that

$$
d-2 r-f+3 \geq 0 \quad \text { and } \quad d-r \leq g-f+1,
$$

one has

$$
\operatorname{dim}\left(W_{d}^{r}\right) \leq d-2 r-f+3
$$

Let $d^{\prime} \in \mathbb{Z}_{\geq 2 f-2}$ such that

$$
d^{\prime}-f \geq 0 \quad \text { and } \quad d^{\prime} \leq g-f+1
$$

Assume that Y is an irreducible component of $W_{d^{\prime}}^{1}$ of dimension $d^{\prime}-f$. Then,

$$
Y \subset W_{2 f-2}^{1}+W_{d^{\prime}-2 f+2}
$$

Proof. The lemma trivially holds for $d^{\prime}=2 f-2$. Assume that $d^{\prime}-2 f+2 \geq 0$ and that the lemma holds for $d^{\prime}-1$ instead of d^{\prime}. Assume that $Y \not \subset W_{d^{\prime}-1}^{1}+W_{1}$.

If $x \in Y$ so that $x \notin W_{d^{\prime}-1}^{1}+W_{1}$, then

$$
2 x \in W_{2 d^{\prime}}^{d^{\prime}-f+2} \quad \text { (see Lemma 4) }
$$

(a) If $d^{\prime} \leq g-2 f+3$, then

$$
\operatorname{dim}\left(W_{2 d^{\prime}}^{d^{\prime}-f+2}\right)<f-1
$$

(because of our assumption), hence

$$
d^{\prime}-f \leq f-2 \quad \text { and } \quad d^{\prime} \leq 2 j-2
$$

(b) If $d^{\prime}>g-2 f+3$, then

$$
W_{2 d^{\prime}}^{d^{\prime}-f+2}=k-W_{2 g-2-2 d^{\prime}}^{g-d^{\prime}-f+}
$$

If $d^{\prime} \leq g-f$, then we obtain that

$$
\operatorname{dim}\left(W_{2 d^{\prime}}^{d^{\prime}-f+2}\right)<f-1
$$

(again because of our assumption), hence

$$
d^{\prime}-f \leq f-2 \quad \text { and } \quad d^{\prime} \leq 2 f-2 .
$$

If $d^{\prime}=g-f+1$, then we obtain

$$
W_{2 g-2 f+2}^{g-2 f+3}=k-W_{2 f-4},
$$

hence

$$
\operatorname{dim}\left(W_{2 g-2 f+2}^{\prime g-2 f+3}\right)=2 f-4,
$$

hence $g \leq 4 f-5$, which is a contradiction with the assumption.
Continuation of the proof of Theorem 6. Because of Lemma 8, one can assume that there exist $d^{\prime \prime}$ such that $f \leq d^{\prime \prime} \leq 2 f-2$ and Y, an irreducible component of $W_{d^{\prime \prime}}^{1}$ such that $\operatorname{dim}(Y)=d^{\prime \prime}-f$. In Lemma 9, we prove that there exists $\varrho \in W_{f}^{1}$ such that $Y=\{\varrho\}+W_{d^{\prime \prime}-f}$.

Lemma 9. Let $d \in \mathbb{Z}$ such thet $f \leq d \leq 2 f-2$ and assume that $g>\binom{d}{2}$. Assume that Y
is an i.reducible component of W_{d}^{1} of dimension $d-f$. Then, there exists $\varrho \in W_{f}^{1}$ such that

$$
Y=\{\varrho\}+W_{d-f} .
$$

Procf. Lemma 9 holds for $d=f$. Assume that $d>f$ and that Lemma 9 holds for $d-1$ instead of d. Assume that

$$
Y \not \subset W_{d-1}^{1}+W_{1}
$$

Because there exists no covering $\phi: C \rightarrow \tilde{C}$ with $1 \leq \operatorname{deg}(\phi)<\tilde{f}$, we know that C has infinitely many $g_{d}^{\frac{1}{d}}$ s so that any two of them are not compounded by the same involution on C. This is a contradiction with $g>\binom{d}{2}$ (see Proposition 3). Hence, if Y is an irreducible component of W_{d}^{1} so that

$$
\operatorname{dim}(Y)=d-f
$$

then

$$
Y \subset W_{d-1}^{1}+W_{1}
$$

and therefore, W_{d-1}^{\prime} has an irreducible component Y^{\prime} of dimension $d-1-f$ such that $Y==Y^{\prime}+W_{1}$. Because of our induction hypothesis, there exists $\varrho \in W_{f}^{1}$ such that

$$
Y^{\prime}=\{\varrho\}+W_{d-f-1},
$$

hence $Y=\{\varrho\}+W_{d f}$.
Contir' 'ation of the proof of Theorem 6. Now, because $W_{f}^{\prime} \neq \emptyset, C$ is f-gonal and assertion (a) is proved.

Because of our inductionhypothesis, we can assume that C is d-gonal for each $d \geq g-f+3$. Because $W_{f-1}^{1}=\emptyset$, we know that

$$
\operatorname{dim}\left(W_{g}^{\prime} f+z\right) \leq g-2 f+2 .
$$

But, because of [5],

$$
\underline{\operatorname{dim}}\left(W_{g-f+2}^{1}\right) \geq g-2 f+2 .
$$

Hence, $u_{k}^{\prime} f_{t+2}$ is equidimensional of dimension $g-2 f+2$. If C is not f-gonal, then

$$
\operatorname{dim}\left(W_{g f+1}^{\prime}\right) \leq g-2 f
$$

and therefore

$$
W_{z_{1, ~}^{\prime}}^{\prime} \neq W_{g_{1,1}^{\prime}}^{1}+W_{1},
$$

which proves that C is $(g-f+2)$-gonal.

Lemma 10. Assume that

$$
\underline{\operatorname{dim}}\left(W_{g-f+2}^{1}\right)=\operatorname{dim}\left(W_{g-f+2}^{1}\right)=g-2 f+2
$$

Assume that, for $d \in Z_{\geq 1}$ such that $d \leq g-f+1$, one has the following property: if Y is an irreducible component of W_{d}^{1} of dimension $d-f$, then there exists $\varrho \in W_{f}^{1}$ such that $Y=\{\varrho\}+W_{d-f}$. Then, the curve C is $(g-f+2)$-gonal.

Proof. Assume that

$$
W_{g-f+2}^{1}=W_{g-f+1}^{1}+W_{1}
$$

For each irreducible component Y^{\prime} of W_{g-f+2}^{1}, there exists an irreducible component Y of W_{g-f+1}^{1} of dimension $g-2 f+1$ so that

$$
Y^{\prime}=Y+W_{1}
$$

Because of the assumption, there exist $\varrho \in W_{f}^{1}$ such that

$$
Y=\{\varrho\}+W_{g-2 f+1},
$$

and therefore

$$
Y^{\prime}=\{\varrho\}+W_{g-2 f+2}
$$

Hence, from our assumptions, it follows that

$$
W_{g-f+2}^{1}=W_{f}^{1}+W_{g-2 f+2}
$$

Let $f<d<g-f+2$ and assume that

$$
W_{d}^{\prime} \neq W_{d-1}^{1}+W_{1}
$$

Let R be an effective divisor on C of degree d with $\operatorname{dim}(|R|)=1$ and such that $|R|$ has no fixed points. Assume that C is canonically embedded. Then

$$
\operatorname{dim}(\langle R\rangle)=d-2
$$

There exist $\lambda=g-f-d-2$ points $x_{1}, \ldots, x_{\lambda}$ on C, so that

$$
\operatorname{dim}\left(\left\langle R+x_{1}+\cdots+x_{\lambda}\right\rangle\right)=g-f
$$

hence

$$
\operatorname{dim}\left(\left|R+x_{1}+\cdots+x_{\lambda}\right|\right)=1
$$

because of the geometric Riemann-Roch Theorem. But there exists a linear system g_{f}^{\prime} on C and $\lambda^{\prime}=g-2 f+2$ points $y_{1}, \ldots, y_{i^{\prime}}$ on C so that

$$
R+x_{1}+\cdots+x_{\lambda} \in g_{f}^{1}+y_{1}+\cdots+y_{\lambda^{\prime}} .
$$

This gives a contradiction to $f<d$. This means that, for $f<\mu<g-f+1$, one has

$$
W_{\mu}^{\prime}=W_{\mu-1}^{\prime}+W_{1}
$$

Hence, there exist exactly $f-2$ integers $a<g$, such that there exists a morphism
$p: C \rightarrow \mathbb{P}^{1}$ of degree a. From the results of [5], it follows that

$$
g<(f-1)^{2}
$$

(see e.g. [10], p. 69(v)). Hence,

$$
W_{g-f+2}^{1} \neq W_{g-f+1}^{1}+W_{1}
$$

and therefore, C is $(g-f+2)$-gonal.

Continuation of the proof of Theorem 6. Because of Lemmas 8 and 9, the assumptions of Lemma 10 are fulfilled. This proves assertion (b).

In order to get better results than those obtaired in Theorem 6, it would be interesting if one knows more about curves having infinitely many $g_{d}^{\prime} ’ s$. In some examples, we are going to give refinements of Theorem 6.

Theorem 11. Let $g \in \mathbb{Z}_{\geq 2}, d \in \mathbb{Z}_{\leq g}$ and $a \in \mathbb{Z}_{\geq 1}$. If

$$
\operatorname{dim}\left(W_{d}^{\prime}\right) \geq 2 a \quad \text { and } \quad W_{d}^{2}=\emptyset
$$

then $\boldsymbol{W}_{d}^{1}{ }_{a} \neq \boldsymbol{0}$.
Proof. Consider $J(C) \times C$ and the projection morphisms

$$
p^{\prime}: J(C) \times C \rightarrow J(C) \text { and } q^{\prime}: J(C) \times C \rightarrow C
$$

Let $x \in J(C)$ and let F be an $O_{\not(C)} \times\left(-\right.$ Module. The fibre of p^{\prime} over x gives a closed immersion $C \rightarrow J(C) \times C$. We write F_{v} for the inverse image of F by this closed immersion. Consider the universal invertible sheat L^{\prime} on $J(C) \times C$ so that

$$
L_{x}^{\prime} \equiv O_{C}\left(D-d P_{0}\right)
$$

if $D \in C^{(d)}$ so that $[I(d)](D)=x$. Let

$$
L:=L^{\prime} \otimes\left(q^{\prime}: O_{C}\left(d P_{0}\right)\right)
$$

Let Y be an irreducible component of U_{d}^{\prime} so that $\operatorname{dim}(Y) \geq 2 a$. Let L_{y} be the inverse image of L by the closed immersion $Y \times C \subset J(C) \times C$. Let p and q be the restriction of p^{\prime} resp. q^{\prime} to $Y \times C$. The O_{Y}-Module

$$
E:=f *\left(L_{\gamma}\right)
$$

is a locally free C_{2}-Module of rank 2. From [13, Proposition 7], it follows that

$$
\mathbb{P}(E) \rightarrow Y
$$

is obtained from $I d$) by making the base extension $Y \subset J(C)$. Here, $\mathbb{P}(E)$ is the projectivized geometiic bundle on Y associated to E, i.e. it equals $F\left(E^{D}\right)$ as it is defined in [2, 11.4 1]. Let

$$
M:=\ell^{\prime} *\left(q^{*}\left(O_{u P_{1}}\right) \otimes L_{\gamma^{\prime}}\right)
$$

It is a locally free O_{Y} - Module of rank a. On $Y \times C$, we have a natural $O_{Y \times C^{-}}$ Module homomorphism

$$
L_{Y} \rightarrow q^{*}\left(O_{a P_{0}}\right) \otimes L_{Y}
$$

which gives rise to an $\boldsymbol{O}_{\boldsymbol{\gamma}}$-Module homomorphism

$$
\sigma: E \rightarrow M .
$$

From [3, Lemma (2.7)], it follows that $E^{\nu} \otimes M$ is ample, hence from [3, Theorem II], it follows that

$$
D_{0}(\sigma)=\{y \in Y: \operatorname{rk}(\sigma(y)) \leq 0\}
$$

is not empty. Here, if y is a \mathbb{C}-rational point on Y, we write $\sigma(y)$ for the morphism obtained from σ by making the base extension $\operatorname{Spec}(\mathbb{C}) \rightarrow Y$ corresponding to y. This proves that $\boldsymbol{W}_{\boldsymbol{d}}^{\prime} \boldsymbol{a} \boldsymbol{0}$.

Examples 12. (a) Let C be a smooth curve of genus $g \geq 13$. Assume that there exists no covering $\phi: C \rightarrow \bar{C}$ with $1<\operatorname{deg}(\phi)<4$.

We prove that the assertions (a) and (b) of Theorem 4, with $f=4$, are true under these assumptions.

If there exist $r, d \in \mathbb{Z}_{\geq 1}$ so that

$$
\operatorname{dim}\left(\boldsymbol{W}_{d}^{\prime}\right) \geq d-2 r-2 \geq 0 \quad \text { and } \quad d-r \leq g-4
$$

then, because of Lemmas 7 and 8 ,

$$
\operatorname{dim}\left(W_{0}^{1}\right)=2 .
$$

If we prove that for each 2-dimensional irreducible component Y of W_{6}^{1} one has $\boldsymbol{Y} \subset \boldsymbol{W}_{4}^{1}+\boldsymbol{W}_{2}$, then, because of Lemma $9, C$ is $(g-2)$-gonal. Hence, it is enough to prove that for each 2-dimensional irreducible compuaent Y of W_{6}^{1} one has $Y \subset W_{4}^{\prime}+W_{2}$. Because there exist no covering $\phi: C \rightarrow \tilde{C}$ with $1<\operatorname{deg}(\phi)<4$, the assumptions of Proposition 3 - with $d=5$ - are fulfilled if there exists a onedimensional irreducible component Y^{\prime} of W_{5}^{1} such that $Y^{\prime} \not \subset W_{4}^{1}+W_{1}$. Hence, for each one-dimensional irreducible component Y^{\prime} of W_{5}^{1} one has $Y^{\prime} \subset W_{4}^{1}+W_{1}$.

Assume that there exists a 2-dimensional irreducible component Y of W_{6}^{1} so that $Y \not \subset W_{4}^{1}+W_{2}$. I follows that there exists a non-empty Zariski open subset U of Y so that each \mathbb{C}-rational point on U corresponds to a complete linear system g_{6}^{1} on C without fixed points. Moreover, because of Lemma 5,

$$
\operatorname{dim}\left(\left|2 g_{6}^{\prime}\right|\right) \geq 4 .
$$

Applying Theorem 11 , we know that C ras a g_{5}^{1} which is complete. Let g_{1} be a complete $g \frac{1}{5}$ on C and let g_{2} be a complete g_{6}^{1} without fixed points on C satisfying $\operatorname{dim}\left(\left|2 g_{2}\right|\right) \geq 4$. Because of Lemma 2, one has

$$
\left.\operatorname{dim}\left(g_{1}+g_{2}\right\}\right) \geq 3 .
$$

Hence, because of Lemma 2, one has

$$
\operatorname{dim}\left(g_{1}+2 g_{2}\right) \geq 7
$$

Hence $\operatorname{dim}\left(W_{17}^{7}\right) \geq 2$. Beca. ase of Lemma 7, we obtain

$$
\operatorname{dim}\left(W_{12}^{\prime}\right) \geq 8
$$

It follows from [12] that there exists a covering $\phi: C \rightarrow \tilde{C}$ with $1<\operatorname{deg}(\phi)<4$. This is a contradiction with the assumptions. Hence, there exists no 2-dimensional irreducible component Y of W_{6}^{1} unless $Y \subset W_{4}^{1}+W_{2}$.
(b) Let C be a smooth curve of genus $g \geq 21$. Assume that there exists no covering $\phi: C \rightarrow \bar{C}$ with $1<\operatorname{deg}(\phi)<5$. We prove that the assertions (a) and (b) of Theorem 4 , with $f=5$, are true under these assumptions.

If there exist $r, d \in \mathbb{Z}_{\geq 1}$ so that

$$
\operatorname{dim}\left(W_{d}^{r}\right) \geq d-2 r-3 \geq 0 \quad \text { and } \quad d-r \leq g-5
$$

then, because oi Lemmas 7 and 8 .

$$
\operatorname{dim}\left(W_{8}^{1}\right)=3 .
$$

If we prove that for each 3-dimensional irreducible component Y of W_{8}^{1} one has $Y \subset W_{s}^{1}+W_{3}$, then, because of lemma $10, C$ is $(g-3)$-gonal. Hence it is enough to prove that for each 3-dimensional irreducible component Y of $\boldsymbol{W}_{8}{ }^{1}$ one has $Y \subset \boldsymbol{W}_{5}^{\prime}+\boldsymbol{W}_{3}$. Assume that there exists a 3-dimensional irreducible component Y of W_{x}^{1}.
Asume that there exists a non-empty Zariski open subset U of Y so that each C-rational point on U corresponds to a complete linear system g_{8}^{1} on C without fixed peints. Hence, because of Lemma 5 ,

$$
\operatorname{dim}\left(2 g_{8}^{\prime} \mid\right) \geq 5 .
$$

Applying Theorem 11. we know that C has a $g \frac{1}{7}$, which has to be complete because there exist no coverings $\phi: C \rightarrow \tilde{C}$ with $1<\operatorname{deg}(\phi)<5$. Let g_{1} be a complete g_{7}^{1} on C and let g_{2} and g_{3} be two different complete linear systems g_{8}^{1} on C without fixed points so that $\operatorname{dim}\left(\left|2 g_{i}\right|\right) \geq 5$ for $i \in\{2,3\}$. Because of Lemma 2, one has

$$
\operatorname{dim}\left(g_{1}+g_{2}\right) \geq 3 .
$$

Hence, because of Lemma 2, one has

$$
\operatorname{dim}\left(g_{1}+2 g_{2}\right) \geq 8
$$

and

$$
\operatorname{dim}\left(g_{1}+g_{2}+g_{3} \mid\right) \geq 6
$$

Again, because of Lemma 2, one has

$$
\operatorname{dim}\left(g_{1}+2 g_{2}+g_{3}\right) \geq 12
$$

Also

$$
\operatorname{dim}\left(\left|g_{1}+g_{2}+2 g_{3}\right|\right) \geq 12
$$

Hence, because of lemma 2, one has

$$
\operatorname{dim}\left(\left|g_{1}+2 g_{2}+2 g_{3}\right|\right) \geq 19 .
$$

Hence $\operatorname{dim}\left(W_{39}^{19}\right) \geq 3$. Because of Lemma 7,

$$
\operatorname{dim}\left(W_{21}^{\prime}\right) \geq 21 .
$$

This is impossible because $g \geq 21$. Hence, there exists no 3 -dimensional irreducible component Y of W_{8}^{1} unless $Y \subset W_{7}^{1}+W_{1}$.

Assume that $g \geq 22$. Assume that Y^{\prime} is an irreducible component of W_{7}^{1} of dimension 2. Because of Lemme. 9, one has $Y^{\prime} \subset W_{5}^{1}+W_{2}$. Hence, if $g \geq 22$, then every irreducible component Y of W_{8}^{1} of dimension 3 satisfies $Y \subset W_{s}^{1}+W_{3}$. On the other hand, assume that $g=21$. If $W_{8}^{2} \neq \emptyset$, then C is isomorphic to a plane curve of degree 8. Hence, $\operatorname{dim}\left(W_{7}^{1}\right)=1$. Therefore, if Y is an irreducible component of W_{7}^{1} of dimension 2, then $W_{8}^{2}=\emptyset$. Assume that there exists a 2-dimensional irreducible component Y^{\prime} of W_{7}^{1} so that

$$
Y^{\prime} \not \subset W_{6}^{1}+W_{1}
$$

But, if $d, g \in \mathbb{Z}_{\geq 2}$ so that $g=\frac{1}{2} d(d-1)$ and if C is a smooth curve of genus g haviag infinitely many g_{d}^{\prime} 's so that any two of them are not compounded of the same involution on C, then C is isomorphic to a smooth plane curve of degree $d+1$. This will be proved in the author's Ph.D. Thesis. A proof can also be found in E.K. Hoff's Master of Science thesis entitled "Polygonal curves", following ideas of G. Martens. But, if Y is a 2 -dimensional irreducible component of W_{7}^{1} such that $Y \subset W_{6}^{1}+W_{1}$, then, because oi Proposition $3, Y \subset W_{5}^{1}+W_{2}$. Hence, if $g=21$ and if Y is an irreducible component of W_{8}^{1} of dimension 3, then $Y \subset W_{5}^{1}+W_{3}$.

In Example 6(c), we are goirg to give another argument that can be used to examine the case $g=21$.
(c) Let C be a smooth curve of genus $g \geq 33$. Assume that there exists no covering $\phi: C \rightarrow \tilde{C}$ with $1<\operatorname{deg}(\phi)<6$. We prove that the assertions (a) and (b) of Theorem 4 , with $f=6$, are true under these assumptions.

If there exist $r, d \in \mathbb{Z}_{\geq 1}$ so that

$$
\operatorname{dim}\left(W_{d}^{r}\right) \geq d-2 r-4 \geq 0 \quad \text { and } \quad d-r \leq g-6
$$

then, because of Lemmas 7 and 8,

$$
\operatorname{dim}\left(W_{10}^{1}\right)=4
$$

If we prove that for each 4-dimensional irreducible component Y of W_{10}^{1} one has $Y \subset W_{6}^{1}+W_{4}$, then, because of Lemma $10, C$ is $(g-4)$-gonal. Henc:, it is enough to prove that for each 4-dimensional irreducible component Y of W_{10}^{1} one has $Y \subset W_{6}^{1}+W_{4}$. Let Y be a 4-dimensional irreducible component of W_{10}^{1}.

Assume that there exists a non-empy Zariski open subset U of Y so that each \mathfrak{C}-rational point on U corresponds to a complete linear system \mathfrak{g}_{10}^{1} on C without fired points. Because of Lemma 5,

$$
\operatorname{dim}\left(\left|2 g_{10}^{1}\right|\right) \geq 6 .
$$

Applying Theorem 5 , we know that C has a g_{8}^{1}, which has to be complete because there exists no covering $\phi: C \rightarrow \bar{C}$ such that $1<\operatorname{deg}(\phi)<6$. Let g_{1} be a complete g_{8}^{1} on C and let g_{2} and g_{3} be two different complete linear systems g_{10}^{1} on C without fixed points and so that $\operatorname{dim}\left(\left|2 g_{i}\right|\right) \geq 6$ for $i \in\left\{2,3_{i}\right.$. Using Lemma 2 in exactly the same manner as :e did in Example 6(b), one can prove that

$$
\operatorname{dim}\left(\left|g_{1}+2 g_{2}+2 g_{3}\right|\right) \geq 21
$$

Hence

$$
\operatorname{dim}\left(W_{48}^{2 l}\right) \geq 4=48-42-4+2 .
$$

We can apply Theorem 4 to conclude that C is 4 -gonal. This gives a contradiction with the fact that there exists no covering $\phi: C \rightarrow \tilde{C}$ with $1<\operatorname{deg}(\phi)<6$. Hence, $\boldsymbol{Y} \subset \boldsymbol{W}_{9}{ }^{1}+\boldsymbol{W}_{1}$.

Assume that $g \geq 37$. Assume that Y^{\prime} is an irreducible component of $W_{9}{ }^{1}$ of dimension 3. Because of Lemma s one has $Y^{\prime} \subset W_{6}{ }^{1}+W_{3}$. Hence, if $g \geq 37$, then every irreducible component Y of,v_{10}^{1} of dimension 4 satisfies $Y \subset W_{6}^{1}+W_{4}$. If $g=36$, then one can repeat the arguments of the case $g=22$ in Example (b). Let $g=35$. In the author's Ph.D. Thesis, the following statement will be proved. If $d, g \in \mathbb{Z}_{\geq 2}$ so that $g=\frac{1}{2} d(d-1)-1$ and if C is a smooth curve of genus g having infinitely many g_{d}^{\prime} 's so that any two of them are not compounded of the same involution on C, then C is birationally equivalent to a plane cirve of degree $d+1$. Using this, one can again argue as in the case $g=36$.

One can also argue as follows. Let Y be an irreducible component of W_{9}^{1} of dimension 3 such that $Y \not \subset W_{6}^{1}+W_{3}$. If $Y \subset W_{9}^{2}$, then, because of Theorem 6 , one has that C is trigonal, which is a contradiction to the fact that there exist no morphisms $p: C \rightarrow \tilde{C}$ such that $1<\operatorname{deg}(\phi)<6$. Because of Lemma 9, if $Y \subset W_{8}^{1}+W_{1}$, then $¥ \subset W_{6}^{\prime}+W_{3}$. Hence, Y contains a non-empty Zariski open subset V of Y^{\prime} so that each $\sqrt{2}$-rational point on V corresponds to a complete linear system g_{9}^{1} without fixed point. Moreover, because of Lemma 5,

$$
\operatorname{dim}\left(2 g_{1}^{1}\right) \geq 5 .
$$

Because of Theorem 10, it follows that C has a g_{8}^{1} which is complete because $g \geq 22$ and there exist no coverings $\phi: C \rightarrow \bar{C}$ with $1<\operatorname{deg}(\phi)<6$. Let g_{1} be a complete g_{8}^{1} on C and let g_{2}, g_{3} and g_{4} be three different complete linear systems g_{9}^{1} on C without fixed points so that $\operatorname{dim}\left(2 g_{i}\right) \geq 5$ for $i \in\{2,3,4\}$. Using Lemma 2, one can prove that

$$
\operatorname{dim}\left(g_{1}+2 g_{2}+2 g_{3}+g_{4}\right) \geq 24,
$$

hence

$$
\operatorname{dim}\left(W_{53}^{24}\right) \geq 3
$$

and because $g \geq 33$, we conclude that C is 4 -gonal which is a contradiction with the fact that there exists no covering $\phi: C \rightarrow \bar{C}$ with $1<\operatorname{deg}(\phi)<6$. Hence, if $g \geq 33$ and if Y is an irreducible component of W_{10}^{1} of dimension 4 , then $Y \subset W_{6}^{1}+W_{4}$.

Acknowledgement

I thank the referee and also R. Horiuchi for the comments they gave on an earlier draft of this paper. The first version of this paper is made while the author worked at the University of Utrecht.

Note added in proof

Some of the results are also obtained in R. Horiuchi's paper: "Gap orders of meromorphic functions on Riemann surfaces", J. Reine Angew. Math. 336 (1982) 213-220.

References

[1] R.D.M. Accola, On Castelnuovo's inequality for algebraic curves. I, Trans. Amer. Math. Soc. 251 (1979) 357-363.
[2] A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique, Chap. II, I.H.E.S. Publ. Math. No. 8 (1961).
[3] W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981) 271-283.
[4] P. Griffiths and J. Harris, Principles of Algebraic Geometry (Wiley Interscience, New York, 1978).
[5] P. Griffiths and J. Harris, On the variety of special linear systeris on a general algebraic curve, Duke Math. J. 47 (1980) 233-272.
[6] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52 (Springer-Verlag, Berlin, 1977).
[7] E. Horikawa, On deformations of i olomorphic maps I, J. Math. Soc. Japan 25 (1973) 372-396.
[8] R. Horiuchi, On the existence o meromorphic functions with certain lower order on nonhyperelliptic Riemann surfaces, J. Math. Kyoto Univ. 21 (1981) 397-416.
[9] R. Horiuchi, Meromorphic functions on 2-hyperelliptic Riemann surfaces, Japan J. Math. 7 (1981) 301-306.
[10] G. Martens, Funktionen von vorgegebener Ordnung auf komplexen Kurven, J. Feine Angew. Math. 320 (1980) 68-85.
[11] H. Martens, On the varieties of special divisors on a curve. I, J. Reine Angew. Math. 227 (1967) 111-120.
[12] D. Mumford, Prym varieties. I, Appendix. A Theorem of Martens, in: Contributions to Analysis (1974) 348-350.
[!3] R.L.E. Schwartzenberger, Jacobians and symmetric products, Illinois J. Math. 7 (1963) 257-268.
[14] F. Oort, A construction of generalized Jacobian varieties by group extensions, Math. Annalen 147 (1962) 277-286.
[15] R.J. Walker, Algebraic Curves (Springer-Verlag, Berlin, 1978).

